Power distribution systems are designed to function at 50 or 60 Hz frequencies. But some types of connected loads generate current and voltage with different frequency which may be in multiples of the 50 or 60 Hz basic frequency. These abnormal frequencies cause electrical distortion which is called power system harmonics.
Power quality problems can produce equipment malfunctioning, voltage fluctuations, power outage and system distortions. It’s prime responsibility of maintenance engineer to understand the causes of these problems and to find out the solution to prevent them.
The sources of harmonics generation are power electronic loads such as variable frequency drives (VFDs), computers, printers and switching power supplies. The abundant use of non-linear (such as a rectifier) loads also results harmonics.
Introduction:
Usually the voltage varies sinusoidal at a fundamental frequency of 50 or 60 Hz. While we connect linear load it draws a sinusoidal current but in case of non-liner load it is not perfectly sinusoidal.
Generally because of the third harmonics, the neutral conductor current increases so an electrical engineer should take care in the design of an electric system considering non-linear load. Besides the increased line current, other part of electrical machine may bear ill effects because of harmonics in the power system. Normally 1st to 25th harmonics are considered, in which the majority problems are due to 3rd, 5th and 7th harmonics.
Generation of Harmonics in power system:
At the point of power generation, the power distortion may be very less i.e 1% to 2% only.
Linear loads: When a sinusoidal voltage is connected with a load, the current drawn by the load is proportional with the voltage. e.g. resistive heaters, incandescent bulbs, constant speed motors etc.
Nonlinear loads: The non-sinusoidal current and voltage waveforms
In contrast, some loads cause the current to vary disproportionately with the voltage during each half cycle. These loads are classified as nonlinear loads, and the current and voltage have waveforms that are non-sinusoidal, containing distortions, whereby the 60-Hz waveform has numerous additional waveforms superimposed upon it, creating multiple frequencies within the normal 60-Hz sine wave. The multiple frequencies are harmonics of the fundamental frequency.
Motors:
Electric motors experience hysteresis loss caused by eddy currents set up in the iron core of the motor. These are proportional to the frequency of the current. Since the harmonics are at higher frequencies, they produce more core loss in a motor than the power frequency would. This results in increased heating of the motor core, which (if excessive) can shorten the life of the motor. The 5th harmonic causes a CEMF (counter electromotive force) in large motors which acts in the opposite direction of rotation. The CEMF is not large enough to counteract the rotation, however it does play a small role in the resulting rotating speed of the motor.VFD (Variable Frequency Drives):
There is an increasing use of variable frequency drives (VFDs) that power electric motors. The voltages and currents emanating from a VFD that goes to a motor are rich in harmonic frequency components. Voltage supplied to a motor sets up magnetic fields in the core, which create iron losses in the magnetic frame of the motor. Hysteresis and eddy current losses are part of iron losses that are produced in the core due to the alternating magnetic field. Hysteresis losses are proportional to frequency, and eddy current losses vary as the square of the frequency. Therefore, higher frequency voltage components produce additional losses in the core of AC motors, which in turn, increase the operating temperature of the core and the windings surrounding in the core. Application of non-sinusoidal voltages to motors results in harmonic current circulation in the windings of motors. The net rms current is [I.sub.rms] = [square root of [([I.sub.1]).sup.2] + [([I.sub.2]).sup.2] + [([I.sub.3]).sup.2] +] ..., where the subscripts 1, 2, 3, etc. represent the different harmonic currents. The [I.sub.2]R losses in the motor windings vary as the square of the rms current. Due to skin effect, actual losses would be slightly higher than calculated values. Stray motor losses, which include winding eddy current losses, high frequency rotor and stator surface losses, and tooth pulsation losses, also increase due to harmonic voltages and currents.
The phenomenon of torsional oscillation of the motor shaft due to harmonics is not clearly understood, and this condition is often disregarded by plant personnel. Torque in AC motors is produced by the interaction between the air gap magnetic field and the rotor-induced currents. When a motor is supplied non-sinusoidal voltages and currents, the air gap magnetic fields and the rotor currents contain harmonic frequency components.
The harmonics are grouped into positive (+), negative (-) and zero (0) sequence components. Positive sequence harmonics (harmonic numbers 1,4,7,10,13, etc.) produce magnetic fields and currents rotating in the same direction as the fundamental frequency harmonic. Negative sequence harmonics (harmonic numbers 2,5,8,11,14, etc.) develop magnetic fields and currents that rotate in a direction opposite to the positive frequency set. Zero sequence harmonics (harmonic numbers 3,9,15,21, etc.) do not develop usable torque, but produce additional losses in the machine. The interaction between the positive and negative sequence magnetic fields and currents produces torsional oscillations of the motor shaft. These oscillations result in shaft vibrations. If the frequency of oscillations coincides with the natural mechanical frequency of the shaft, the vibrations are amplified and severe damage to the motor shaft may occur. It is important that for large VFD motor installations, harmonic analyses be performed to determine the levels of harmonic distortions and assess their impact on the motor.
Transformers:
The harmful effects of harmonic voltages and currents on transformer performance often go unnoticed until an actual failure occurs. In some instances, transformers that have operated satisfactorily for long periods have failed in a relatively short time when plant loads were changed or a facility's electrical system was reconfigured. Changes could include installation of variable frequency drives, electronic ballasts, power factor improvement capacitors, arc furnaces, and the addition or removal of large motors.
Application of non-sinusoidal excitation voltages to transformers increase the iron losses in the magnetic core of the transformer in much the same way as in a motor. A more serious effect of harmonic loads served by transformers is due to an increase in winding eddy current losses. Eddy currents are circulating currents in the conductors induced by the sweeping action of the leakage magnetic field on the conductors. Eddy current concentrations are higher at the ends of the transformer windings due to the crowding effect of the leakage magnetic fields at the coil extremities. The eddy current losses increase as the square of the current in the conductor and the square of its frequency. The increase in transformer eddy current loss due to harmonics has a significant effect on the operating temperature of the transformer. Transformers that are required to supply power to nonlinear loads must be de-rated based on the percentages of harmonic components in the load current and the rated winding eddy current loss.
One method of determining the capability of transformers to handle harmonic loads is by k factor ratings. The k factor is equal to the sum of the square of the harmonic currents multiplied by the square of the frequencies.
k = [([I.sub.1]).sup.2]([1.sup.2]) + [([I.sub.2]).sup.2]([2.sup.2]) + [([I.sub.3]).sup.2]([3.sup.2]) + . . . + [([I.sub.n]).sup.2]([n.sup.2]).
where [I.sub.1] = ratio of fundamental current to total rms current, [I.sub.2] = ratio of second harmonic current to total rms current, [I.sub.3] = ratio of third harmonic current to total rms current, etc., and 1,2,3, ... n are harmonic frequency numbers. The total rms current is the square root of the sum of square of the individual currents.
By providing additional capacity (larger-size or multiple winding conductors), k factor rated transformers are capable of safely withstanding additional winding eddy current losses equal to k times the rated eddy current loss. Also, due to the additive nature of triplen harmonic (3, 9, 15, etc.) currents flowing in the neutral conductor, k rated transformers are provided with a neutral terminal that is sized at least twice as large as the phase terminals.
Capacitor banks:
Your Blog shares a valuable information about #HarmonicAnalysis. It is very helpfull to detect the problems in faults occur. The Harmonics are undesirable in any power system as they result in higher transmission and distribution losses. They are as a result of either unbalanced or non-linear loads. Power stations generate very low levels of harmonics which are normally generated by customer loads. The advantage of harmonics is in protection systems where the zero sequence currents may be used for unsymmetrical three phase fault detection. we are one of the top most Electrical hazard safety assessment consultants in the world. we provide services like Arc Flash Analysis, Short Circuit Analysis, Harmonic analysis, Relay coordination, etc, ....If you have any queries, Click on Harmonic Analysis <\a>
ReplyDeleteThanks for your provocative remarks, you had shared valuable information about Harmonic distortions are one of the most common and irritating problems in industrial environment. We need to identify the source of harmonics and suppress them for a quality supply of power. We need to measure these harmonics at various points in the system and perform proper scientific analysis as per international standards. Please visit Harmonic Analysis
ReplyDeleteNice blog, Thanks for sharing nice information. We Providing Harmonic Analysis Services, Power System Harmonic Analysis. for more Information visit us Power System Harmonic Analysis
ReplyDelete